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[1] A computationally efficient approach to reducing omission errors in ocean tide
potential models is derived and evaluated using data from the Gravity Recovery and
Climate Experiment (GRACE) mission. Ocean tide height models are usually explicitly
available at a few frequencies, and a smooth unit response is assumed to infer the response
across the tidal spectrum. The convolution formalism of Munk and Cartwright (1966)
models this response function with a Fourier series. This allows the total ocean tide height,
and therefore the total ocean tide potential, to be modeled as a weighted sum of past,
present, and future values of the tide-generating potential. Previous applications of the
convolution formalism have usually been limited to tide height models, but we extend it to
ocean tide potential models. We use luni-solar ephemerides to derive the required tide-
generating potential so that the complete spectrum of the ocean tide potential is efficiently
represented. In contrast, the traditionally adopted harmonic model of the ocean tide
potential requires the explicit sum of the contributions from individual tidal frequencies. It
is therefore subject to omission errors from neglected frequencies and is computationally
more intensive. Intersatellite range rate data from the GRACE mission are used to
compare convolution and harmonic models of the ocean tide potential. The monthly range
rate residual variance is smaller by 4–5%, and the daily residual variance is smaller by as
much as 15% when using the convolution model than when using a harmonic model that
is defined by twice the number of parameters.
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1. Introduction

[2] Improvements to models of the short period variations
in the geopotential, and in particular those with periods of
less than two months, will translate into improved accura-
cies in the monthly gravity fields that are being derived
from the Gravity Recovery and Climate Experiment
(GRACE) mission. The continually improving accuracy in
the precise orbit determination solutions of Earth orbiters
may also benefit from these improved models. We focus on
reducing omission errors in models of the contribution of
the ocean tides to the geopotential, namely the ocean tide
potential models. The approach presented in this paper
efficiently models the complete spectrum of the ocean tide
potential by applying the tide-generating potential (TGP) as
computed from luni-solar ephemerides to the convolution
formalism of Munk and Cartwright [1966], hereinafter
referred to as MC66.
[3] The goal of the GRACE mission is to recover the

global gravity field at monthly intervals to enable investi-
gation of time variable gravity. Preliminary results indicate

that the accuracy of the initial monthly GRACE gravity
fields have not achieved the baseline performance goals
[e.g., Wahr et al., 2004]. Nevertheless, the accuracy of the
initial static gravity fields recovered from GRACE [Tapley
et al., 2004b] are more than an order of magnitude better
than the previously best available fields, such as EGM96
[Lemoine et al., 1998]. Improvements to the GRACE
gravity fields are expected from reprocessing with revised
algorithms and models, and from improvements to the on
board software [Tapley et al., 2004a]. Unmodeled mass
variations with periods shorter than two months will alias
into the monthly time series and may contaminate the longer
period climatic signals that GRACE is intended to observe
[e.g., Thompson et al., 2004]. The ocean tides primarily
have periods of 12 and 24 hours so reducing errors in the
ocean tide potential models will mitigate errors in both the
static and monthly GRACE gravity fields.
[4] The deformations of the Earth that are caused by luni-

solar tidal forces provide the largest contribution to tempo-
ral variations in the geopotential. The variations from the
body tides, or deformations that are caused by the direct
effect of the tidal forces on the solid Earth, are accurately
modeled by applying Earth models to the TGP [e.g.,
McCarthy and Petit, 2004]. Modeling the variations from
the ocean tides, or respective displacements of the oceans, is
not as straightforward because the oceans have a significant
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frequency-dependent response to the tidal forces. Models of
the ocean tide potential must typically be derived a priori
from global ocean tide height models. The ocean tide height
models are derived from global empirical data, the applica-
tion of hydrodynamic equations of motion, or a combination
of these two methods. Significant improvements in the
accuracy of global ocean tide height models have been
achieved over the last decade. Most of these improvements
can be attributed to the availability of high accuracy global
sea surface height measurements from satellite altimeter
missions, particularly from the TOPEX/POSEIDON (T/P)
mission [Fu et al., 1994]. Advances in hydrodynamic
modeling have also contributed to these improvements
especially when the altimetric data are used to constrain
the equations of motion. The T/P-era ocean tide height
models have accuracies of approximately 2–3 cm root-
mean-square (RMS) or better in the deep oceans [Shum et
al., 1997]. Even with these advances Ray et al. [2003],
Knudsen [2003], and Knudsen and Andersen [2002] dem-
onstrate that commission errors in the ocean tide potential
models, as reflected by the inherent accuracy of the cur-
rently available global ocean tide height models, are
expected to be larger than the GRACE performance goals.
[5] The tidal spectrum is composed of hundreds of

frequencies that can be derived from linear combinations
of six fundamental luni-solar astronomical arguments [e.g.,
Cartwright and Taylor, 1971]. An ideal ocean tide potential
model would incorporate all tidal frequencies to full spatial
resolution. However, the available global ocean tide height
models do not explicitly provide an independent model of
the response at each tidal frequency. Instead the ocean tide
height at any frequency is inferred by assuming that the unit
response, or admittance, is a smooth function across the
tidal spectrum. The smooth admittance assumption can be
enforced either a priori to empirically determine the admit-
tance function parameters, [e.g., Cartwright and Ray, 1990;
Desai and Wahr, 1995], or after the fact on models of the
ocean tide height at a few dominant tidal frequencies [e.g.,
Lefèvre, 2002; Ray, 1999]. Various mathematical formula-
tions are used to model the smooth admittance function.
These include the Fourier series model that is adopted by
the convolution formalism of MC66, polynomial functions
of frequency, and the most basic linear interpolation in
frequency of the admittance at a few independently modeled
frequencies. The total ocean tide height, and subsequently
the respective potential, is then the sum total of the
contributions from each individual frequency in the tidal
spectrum.
[6] Traditional ocean tide potential models usually adopt

a harmonic approach where firstly a smooth admittance
assumption is used to determine the respective potential at
each of a list of desired tidal frequencies, and secondly the
total potential is formed from the explicit sum of the
contribution from each of these frequencies. Usually these
models are defined as the sum of only a subset of tidal
frequencies to some maximum spherical harmonic degree
and order depending on the magnitude of their individual
contributions [e.g., McCarthy and Petit, 2004]. In some
cases only those specific terms of the spherical harmonic
expansion and tidal spectrum that are resonant for satellite
orbit determination applications are used instead of the full
spherical harmonic expansion to the defined maximum

degree. Analytic perturbation analyses are often used to
provide an a prior estimate of those terms that need to be
included in the ocean tide potential model [e.g., Bettadpur
and Eanes, 1994; Casotto, 1993; Cheng, 2002]. This
approach becomes computationally expensive as the num-
ber of included tidal frequencies and spherical harmonic
components increases. It also makes these models suscep-
tible to errors from the omission of significant tidal fre-
quencies and spherical harmonic components.
[7] We reduce these omission errors by adopting an

approach that efficiently represents the complete tidal spec-
trum in the ocean tide potential model. We enforce the
smooth admittance assumption directly within the ocean
tide potential model itself and use the MC66 convolution
formalism to represent the admittance function. In doing so,
the complete spectrum of the ocean tide potential is implic-
itly represented without having to explicitly form the sum of
the contributions from every tidal frequency. The convolu-
tion formalism’s Fourier series model of the smooth admit-
tance function in the frequency domain transforms in the
time domain to a weighted sum of past, present, and future
values of the TGP. In their application of the convolution
formalism to local ocean tide height models MC66 com-
puted the TGP from analytically derived luni-solar ephe-
merides. Similarly, we apply the convolution formalism
directly to the total ocean tide potential model and compute
the TGP from the more precise integrated luni-solar ephe-
merides that are now available [e.g., Standish, 1998].
Reduction of omission errors in the ocean tide potential
model is then achieved firstly from the fact that all frequen-
cies in the tidal spectrum are implicitly modeled by using
luni-solar ephemerides to compute the TGP. Secondly, the
gain in computational efficiency from modeling the com-
plete tidal spectrum without an explicit summation of the
contribution from each frequency then facilitates expansion
of the ocean tide potential to higher spherical harmonic
degree and order. In this paper we derive our application of
the convolution formalism to the ocean tide potential and
use GRACE data to demonstrate the improvements that can
be gained.

2. Tide-Generating Potential

[8] The TGP can be directly computed from luni-solar
ephemerides or indirectly from harmonic developments of
this potential. This distinction as well as the fact that the
TGP provides a basis for defining the admittance, or unit
response, of the ocean tides is important for our application
of the convolution formalism. We adopt the Cartwright-
Taylor-Edden [Cartwright and Taylor, 1971; Cartwright
and Edden, 1973], hereinafter referred to as CTE, conven-
tion for the TGP since it is most often used to define the
ocean tide admittance. The CTE convention for the TGP,
VT(t, f, l), at some time t, latitude f, and longitude l, is
expressed by the following spherical harmonic expansion.

VT t;f;lð Þ
g

¼
X1
n¼2

Xn
m¼0

MnmPnm sinfð ÞRe c*nm tð Þeiml
� �

ð1Þ

The real part and conjugate of a complex function f are
denoted by Re[f] and f*, respectively. The amplitude of the
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TGP coefficients, cnm(t), is dependent on the normalizing
factor, Mnm, that is applied to the unnormalized Legendre
polynomial, Pnm(sin f). The CTE normalizing factor that
we adopt differs from that usually applied to spherical
harmonic expansions of the geopotential and is therefore
explicitly defined below.

Mnm ¼ �1ð Þm 2nþ 1ð Þ n� mð Þ!
4p nþ mð Þ!

� �1=2
ð2Þ

Normalizing the tide potential by the mean gravitational
acceleration, g, conveniently allows the coefficients cnm(t)
to have units of height.
[9] The TGP coefficients, cnm(t), can be derived from

time series of the geocentric radial distance, rj, latitude, fj,
and longitude, lj, of the perturbing bodies of mass Mj. The
position of the perturbing bodies is accurately known from
astronomical ephemerides [e.g., Standish, 1998]. Consider-
ation of only the Sun (j = 1) and Moon (j = 2) as the
perturbing bodies is sufficient for most tidal applications,
including the ocean tides. The coefficients cnm(t) are eval-
uated at the surface of the Earth with mean equatorial
radius, a, but can be scaled by (r/a)n to arbitrary geocentric
radial distance, r.

cnm tð Þ ¼ anm tð Þ þ ibnm tð Þ ð3Þ

¼
X2
j¼1

4pGMj

grj

2� dm0ð Þ
2nþ 1ð Þ

a

rj

� �n

�MnmPnm sinfj

� 	
eimlj ð4Þ

dm0 is the Kronecker delta. We deviate from the conven-
tional definition of the TGP by specifically excluding the
permanent tide from the definition of c20(t). The permanent
tide corresponds to the constant component of c20(t) with
tide potential amplitude denoted here by H0. Specifically,
we define a20(t) as follows, so that equation (4) then only
applies to all degrees (n) and orders (m) where (n, m) 6¼ (2,
0).

a20 tð Þ ¼
X2
j¼1

4pGMj

5grj

a

rj

� �2

M20P20 sinfj

� 	
� H0 ð5Þ

This approach is taken to ensure that the permanent tide is
excluded from our application of the convolution formalism
to the ocean tide potential, since the permanent tide is
usually considered to contribute to the mean sea surface
rather than the ocean tide. The IERS2003 standards
[McCarthy and Petit, 2004] recommend a permanent tide
potential amplitude of H0 = �0.31460 meters.
[10] Harmonic developments of the TGP, such as the CTE

development, perform spectral analyses on the coefficients
cnm(t) so that they can be represented by a series with
hundreds of frequencies.

cnm tð Þ ¼
X
k

Hnmke
�i wnmk tþbnmkð Þ ð6Þ

The tidal frequencies wnmk and astronomical phase angles
bnmk can be derived from linear combinations of the six

fundamental luni-solar astronomical arguments using the
Doodson argument number, d1d2d3.d4d5d6 [Doodson,
1921], where d1 = m.

wnmk t þ bnmk ¼ d1tm þ d2 � 5ð Þsþ d3 � 5ð Þhþ d4 � 5ð Þp

þ d5 � 5ð ÞN 0 þ d6 � 5ð Þp0 � d n;mð Þp
2

ð7Þ

d n;mð Þ ¼ 1 if nþ mð Þ odd
0 if nþ mð Þ even



ð8Þ

The astronomical argument tm represents mean lunar time,
s, h, p, and p0 respectively represent the mean longitude of
the Moon, the Sun, the lunar perigee, and the solar perigee,
and N0 represents the negative mean longitude of the
ascending lunar node. The angle d(n, m) p/2 ensures that the
tidal phase angles conform to the CTE conventions. In
practice harmonic developments of the TGP must limit the
series in equation (6) and therefore provide only those tidal
amplitudes, Hnmk, that exceed some defined threshold.
[11] There are two advantages to using equations (4) and

(5) rather than equation (6) to compute the TGP. Firstly, use
of the astronomical ephemerides provides the complete
spectral content of cnm(t) without any application of thresh-
old limits on the amplitudes Hnmk, and is therefore not
susceptible to errors from the omission of tidal frequencies.
Secondly, using the astronomical ephemerides is more
efficient. For each degree and order of the TGP equations
(4) and (5) involve the summation of two terms, for the Sun
and Moon, while also requiring computation of the luni-
solar positions from astronomical ephemerides. In contrast,
similar spectral content and accuracy requires the summa-
tion of the contribution from hundreds of frequencies in
equation (6) as well as the computation of the tidal phase
angles, wnmkt + bnmk for each of those terms. As such, the
body tide potential is usually computed from luni-solar
ephemerides rather than from harmonic developments of
the TGP [e.g.,McCarthy and Petit, 2004]. We similarly take
advantage of these benefits when applying the convolution
formalism to the ocean tide potential.

3. Convolution Formalism Model of the Ocean
Tide Potential

3.1. The Convolution Formalism

[12] Models of the ocean tide height are typically restricted
to the oceanic response to the second degree (n = 2) compo-
nent of the TGP only. The ocean tide response to higher
degrees is considered to be small enough to ignore for most
applications and global models for these ocean tides may not
exist currently. For example, equation (4) shows that the TGP
coefficients are proportional to the ratio (a/rj)

n. The radial
distance to the Moon is approximately 60 Earth radii so the
degree 3 ocean tides should be smaller than the degree 2 ocean
tides by a factor of 60. As is inferred by equation (7), the
spectrum of the second degree TGP is concentrated in three
distinct bands. These three bands, the long-period, diurnal
and semidiurnal bands, are centered at approximatelym = 0, 1
and 2 cycles per day (cpd). Each band of this forcing
function has its own unique spatial dependence so the
unit oceanic response, namely the ocean tide admittance,
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is expected to be a smooth function of frequency within
each band [Munk and Cartwright, 1966; Le Provost et
al., 1991].
[13] The ocean tide height at a particular tidal frequency,

z(w2mk, f, l, t), can be expressed in a similar form to the
forcing function at that frequency (equation (6)) [e.g.,
Cartwright and Ray, 1990].

z w2mk ;f;l; tð Þ ¼ H2mkRe Z* w2mk ;f;lð Þe�i w2mk tþb2mkð Þ
h i

ð9Þ

The complex admittance, Z(w2mk, f, l) = X(w2mk, f, l) +
iY(w2mk, f, l), then defines the unit response of the ocean
tide at a particular frequency, and is determined by
normalizing the ocean tide height by the respective TGP
forcing amplitude, H2mk. It reflects the frequency dependent
response of the oceans to a forcing function of particular
spherical harmonic degree and order spatial distribution.
[14] The convolution formalism of MC66 uses a Fourier

series of period 2p/t to model the smooth frequency
dependent admittance function in each tidal band.

Z w2mk ;f;lð Þ ¼
XS
s¼�S

U2m f;l; sð Þe�iw2mk st ð10Þ

The integer index s denotes each term of the Fourier series
expansion. The complex coefficients of this Fourier series
are the frequency independent convolution weights, U2m(f,
l, s) = u2m(f, l, s) + iv2m(f, l, s). The total ocean tide
height from all frequencies in a particular tidal band can
then be derived by combining equations (6), (9) and (10).

z2m f;l; tð Þ ¼
X
k

z w2mk ;f;l; tð Þ

¼ Re
XS
s¼�S

U2m
* f;l; sð Þc2m t � stð Þ

" #
ð11Þ

In the time domain the convolution formalism computes the
total ocean tide height in each tidal band from the weighted
sum of past, present and future values of the TGP
coefficients in that band, c2m(t). Computation of the total
ocean tide height, and therefore the total ocean tide
potential, then also benefits from the relatively inexpensive
computation of the coefficients c2m(t) using luni-solar
ephemerides, namely using equations (4) and (5). In doing
so, every tidal frequency implicitly contributes to that total.
In each tidal band a summation over hundreds of
frequencies can then be replaced by a summation over
(2S + 1) terms and S < 3 should be sufficient, as is described
below.
[15] The orthogonalized convolution formalism of Groves

and Reynolds [1975] is sometimes used to model the
smooth admittance function, where an orthogonal basis set
of functions, orthotides, are used to represent the ocean tide
height. The orthotides are simple linear combinations of the
Fourier series basis functions so the convolution and ortho-
tide formulations both effectively use a Fourier series to
model the smooth admittance function. The use of ortho-
tides may provide some benefits to the empirical determi-
nation of ocean tide models from a short duration of
observations, but is otherwise unnecessary. They are

certainly unnecessary if the objective is only to derive
the smooth admittance function from available tide height
models at specific tidal frequencies. In this case the
number of degrees of freedom in the admittance function
model is likely to be more important than the form of the
basis functions. For example, Desai and Wahr [1995]
used T/P sea surface data to demonstrate that polynomial
and orthotide, and therefore convolution, approaches to
modeling the smooth admittance function provided similar
results as long as they are defined by an identical number
of parameters.
[16] Oceanography applications usually only require

time series of the total ocean tide height at specific
locations. Furthermore, the accuracy of the tide heights
that is needed allows them to be computed from a subset
of tidal frequencies rather than from the complete tidal
spectrum. The total ocean tide height at some location
can then be efficiently computed by linearly interpolating
global latitude and longitude grids of the tide height
models at the individual frequencies, and secondly by
considering a relatively few tidal frequencies, sometimes
as few as 30 diurnal and semidiurnal frequencies. In
contrast, the burden of computing the contribution of
each tidal frequency to the ocean tide potential escalates
as the number of considered frequencies increases be-
cause the effect of the ocean tides across the globe, as
represented by spherical harmonic expansions, is required.
At any instant in time the total ocean tide potential
should be derived from the sum of each spherical
harmonic component as well as the sum of the contribu-
tion of each considered frequency. The explicit summa-
tion across the tidal spectrum can be eliminated by
directly applying the convolution formalism together with
TGP coefficients computed from luni-solar ephemerides
to spherical harmonic decompositions of the total ocean
tide height.
[17] The spatial dependence of the total ocean tide

height in each tidal band is exclusively represented by
the complex convolution weights (see equation (11)), so
spherical harmonic decompositions of the convolution
weights are determined instead of the tide height at each
frequency.

U2m f;l; sð Þ ¼
X1
l¼0

Xl

p¼0

NlpPlp sinfð Þ

� D2m
lp sð Þ cos plþ E2m

lp sð Þ sin pl
h i

ð12Þ

For consistency, when defining the complex normalized
coefficients Dlp

2m(s) and Elp
2m(s) we adopt the spherical

harmonic normalizing factor Nlp that is usually adopted in
definitions of the geopotential. This factor is explicitly
shown below to avoid any confusion with that used by the
CTE development of the TGP.

Nlp ¼
2l þ 1ð Þ l � pð Þ! 2� dp0

� 	
l þ pð Þ!

� �1=2
ð13Þ

After combining equations (11) and (12) the total ocean tide
height in each tidal band can then be similarly expressed by
spherical harmonic expansions with normalized coefficients
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Alp
2m(t) and Blp

2m(t) that are functions of the convolution
weight coefficients.

z2m f;l; tð Þ ¼
X1
l¼0

Xl

p¼0

NlpPlp sinfð Þ

� A2m
lp tð Þ cos plþ B2m

lp tð Þ sin pl
h i

ð14Þ

A2m
lp tð Þ

B2m
lp tð Þ

0
@

1
A ¼ Re

XS
s¼�S

D2m
lp
* sð Þ

E2m
lp
* sð Þ

0
@

1
Ac2m t � stð Þ

2
4

3
5 ð15Þ

The limit of the Fourier series, S, is not required to be
identical in each tidal band.

3.2. Convolution Formalism Parameters

[18] Application of the convolution formalism requires
definition of the lag interval, t, the Fourier series limit, S,
and the corresponding convolution weights in each tidal
band. A description of the conversion of global ocean tide
height models into spherical harmonic decompositions of
the convolution weights is provided in Appendix A, but
requires definition of t and S.
[19] In the long-period tidal band the ocean tides are

expected to have a response that is close to equilibrium with
the TGP. Any departures from equilibrium are expected to
be small and to decrease with increasing period [e.g., Desai
and Wahr, 1995]. As such, we model the long-period
admittance function as a constant, namely with S = 0, so
that t need not be defined. We define this constant admit-
tance function to be the self-consistent equilibrium model
[e.g., Ray and Cartwright, 1994; Desai and Wahr, 1995],
and use a model that was derived with methods similar to
those used by Desai [2002] to derive the self-consistent
equilibrium ocean pole tide.
[20] Choosing S in the diurnal and semidiurnal tidal

bands requires two considerations. Firstly, the Fourier series
of the convolution formalism provides 2S + 1 degrees of
freedom in the model of the smooth admittance function so
the ocean tide response at 2S + 1 tidal frequencies, or sub-
bands within each tidal band, should be distinctly observ-
able within each tidal band. Secondly, increasing S will tend
to increase the number of ripples in the admittance function.
So S should be large enough to accommodate sufficiently
separate normal modes of the oceanic response within each
tidal band, but should not be so large that it introduces
unrealistic ripples in the admittance function. Using tide
gauge observations MC66 and Zetler and Munk [1975]
concluded that 1 
 S 
 3 is an appropriate range for the
diurnal and semidiurnal bands. Desai and Wahr [1995]
concluded that S = 1 was optimal for empirical global
models of the diurnal and semidiurnal ocean tides that were
determined from less than three years of T/P sea surface
height observations. With more than a decade of T/P data
now available that analysis could be revisited to determine
any benefits from increasing S. However, S > 2 is not likely
to provide any significant benefit, and is likely to add too
many ripples into the smooth admittance model.
[21] We derive the convolution weights from available

ocean tide height models so the 2S + 1 degrees of freedom

proves to be our limiting constraint. Derivation of the
convolution weights requires models of the ocean tide
height for at least 2S + 1 distinct tidal frequencies, and
the ocean tides at each of these frequencies should be
expected to conform to the smooth admittance assumption.
The smooth admittance function that is defined by these
convolution weights then provides a first order estimate of
the response at every tidal frequency in the particular tidal
band that it represents. Any deviations from the smooth
function can then be modeled as corrections to the convo-
lution model, as is described in section 3.3.
[22] In practice corrections to the convolution model are

only necessary at a few frequencies. The S1, S2, and K1
ocean tides, at least, are expected to have significant
departures from the smooth admittance assumption and
ideally they should not be used to derive the convolution
weights. Observations of the oceanic response at the S1 and
S2 frequencies are composed of the sum total of the
gravitational and radiation ocean tides. The gravitational
ocean tide is the response to the luni-solar tidal potential
which should comply with the smooth admittance assump-
tion. The radiation ocean tide refers to the additional
response to non-gravitational effects such as atmospheric
forcing [e.g., Ray and Egbert, 2004] which is largest at
these two tidal frequencies. The free core nutation (FCN)
resonance causes deviations from the smooth admittance
function in diurnal tides that have frequencies close to the
FCN normal mode frequency of approximately 1.00492 cpd
[Desai and Wahr, 1995; Wahr and Sasao, 1981]. This
resonance is expected to amplify the admittance of the
largest diurnal tide, the K1 tide, by 6%. Most of the other
diurnal tides that are affected by the FCN resonance have
relatively small TGP amplitudes so that the effect on their
respective tide heights is likely to be small enough to ignore
for most applications. For example, the FCN resonance is
expected to attenuate the y1 and f1 ocean tide admittances
by 24 and 4%, respectively, but their TGP amplitudes are
more than a factor of 70 smaller than that of the K1 tide.
[23] Even the best available ocean tide height models at

this time typically only independently derive the response at
four or five frequencies in each of the diurnal and semidi-
urnal tidal bands. The response at other frequencies is then
inferred from smooth admittance assumptions. For example,
the GOT00.2 model, a recent version of the empirical model
by Ray [1999], explicitly provides global maps of 3 diurnal
(Q1, O1, and K1) and 4 semidiurnal (N2, M2, S2, and K2)
frequencies. Similarly, the FES2004 model, a recent version
of the empirically constrained hydrodynamic model of
Lefèvre [2002], explicitly provides global maps for 4 diurnal
(Q1, O1, P1, and K1) and 5 semidiurnal (2N2, N2, M2, S2,
and K2) frequencies. The software packages provided with
each tide height model then apply smooth admittance
assumptions to infer the response at other frequencies. After
excluding the S2 ocean tide, for reasons described above,
both models can then only accommodate S = 1 in the
convolution formalism for each of the diurnal and semidi-
urnal tidal bands. Our results are limited to these two ocean
tide models so we always use S = 1 in the diurnal and
semidiurnal tidal bands.
[24] The bandwidth, DF, of the tidal band that is being

modeled by the smooth admittance function provides an
estimate of the lag interval, t. As stated by MC66, choosing
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1/t > 2DF improves convergence of the Fourier series and
limits errors at the outer edges of the modeled tidal band.
The CTE harmonic development of the TGP defines the
diurnal and semidiurnal tidal bands with bandwidths of
0.3 cpd each, ranging from 0.8–1.1 and 1.8–2.1 cpd,
respectively. In contrast, the more recent development by
Tamura [1987] defines bandwidths of 0.5 cpd, ranging
from 0.7–1.2 and 1.7–2.2 cpd, respectively. However,
the largest tidal components in these two bands are
concentrated in the middle of each band, while the outer
edges consist of much smaller tidal components that may
not be detectable, depending on the application. So although
the CTE and Tamura [1987] developments respectively infer
t < 1.7 and 1.0 days the use of lengthier lag intervals implies
that the contribution from the outer edges of the tidal bands
are considered to be negligible. MC66 adopted t = 2 days
based on some tests with tide gauge data.
[25] The impact of two lag intervals, t = 1 and 2 days, on

the dominant spherical harmonic components of the diurnal
and semidiurnal admittance functions is illustrated in
Figures 1 and 2, using the GOT00.2 ocean tide model.
These figures also show the effect of three different
approaches to deriving the convolution weights. The
weighted least squares approach weights each of the
observed and inferred tidal components by Hnmk

2 during

the least squares estimation of the convolution weights
and the resulting convolution weights should most closely
resemble those that would result from their empirical
determination from a time series of the total ocean tide.
From both figures it is apparent that linear interpolation
and extrapolation of the observed tidal components was
used to derive the inferred GOT00.2 tidal components
that were provided to us (R. Ray, personal communication,
2005). Adjustment of the K1 admittance for the free core
nutation resonance was not applied to the diurnal admittances
shown in Figure 1 to better illustrate the admittance relation-
ships that were adopted by the GOT00.2 model.
[26] The various admittance functions are similar at the

central frequencies, between the independently observed
tidal components. Meanwhile significant differences exist
at the outer edges of the tidal bands where each model
essentially provides a different extrapolation of the admit-
tance function. Without independent validation there is no
reason to assume that any one of the approaches is superior,
including the linear extrapolation adopted by the GOT00.2
model. However, the different extrapolations are only im-
portant if the outer edges of the tidal bands contain tidal
components that are large enough to have an impact on the
application at hand.
[27] The shorter lag interval of 1-day generally provides

an admittance function that most closely resembles a linear
extrapolation at the outer edges of the tidal bands. As
expected, the longer 2-day lag interval introduces signifi-
cant sinusoidal variations to the admittance function at the
outer edges of the tidal bands. The equally weighted least
squares approach with t = 1 day fits the GOT00.2 linearly
extrapolated admittances best of all the methods. The
disadvantage of the two least squares approaches is that
neither exactly fits any of the observed or inferred admit-

Figure 1. Comparison of admittance functions for the
degree 2 order 1 spherical harmonic component of the
diurnal tidal band as derived from the GOT00.2 ocean tide
model. The solid circles and squares, respectively, show the
admittance for the three observed (Q1, O1, K1) and nine
inferred tidal components that are provided by the model.
Black and grey lines respectively show convolution
admittance functions that are derived with t = 1.0 and 2.0
days. Solid, dotted, and dashed lines respectively represent
convolution functions where the convolution weights are
derived from an exact fit to the three observed tidal
components, an equally weighted least squares fit (LSQ) to
all observed and inferred tidal components, and a weighted
least squares fit (WLSQ) to all observed and inferred tidal
components.

Figure 2. Same as Figure 1, except for the degree 2 order
2 spherical harmonic component of the semidiurnal tidal
band as derived from the GOT00.2 ocean tide model. The
four observed tidal components are N2, M2, S2, and K2,
there are five inferred components, and S2 is excluded from
all derivations of the convolution weights.
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tances from the model. Application of the convolution
formalism may therefore require small corrections at least
for the observed tidal components to account for differences
with respect to the convolution function. This adds to the
computational overhead of computing the ocean tide poten-
tial. In contrast, exactly fitting the three observed tidal
components has the computational advantage that no cor-
rections to the convolution model are required for the three
observed tidal components in each band.

3.3. Corrections to the Convolution Model

[28] As described earlier, small corrections to the convo-
lution model may be necessary for the few tidal components
that are expected to have significant departures from the
smooth admittance assumption, for example for the S1, S2,
and K1 tidal components as discussed earlier. Similarly,
exact representation of other tidal components that have
explicitly defined tide height models can also be ensured by
applying corrections to the convolution model. For exam-
ple, some long-period ocean tides are provided by the
FES2004 model and can be exactly represented using
corrections to the constant admittance model that is as-
sumed in the long-period band.
[29] Corrections to the convolution model of the ocean tide

potential to account for deviations from the smooth admit-
tance function are easily determined from spherical harmonic
decompositions of these deviations, DZ (w2mk, f, l).

DZ w2mk ;f;lð Þ ¼ Z w2mk ;f;lð Þ � �Z w2mk ;f;lð Þ ð16Þ

¼
X1
l¼0

Xl

p¼0

NlpPlp sinfð Þ

� DAZ
lp w2mkð Þ cos plþ DBZ

lp w2mkð Þ sin pl
h i

ð17Þ

Z(w2mk, f, l) is the admittance derived from the provided
tide height model, and �Z(w2mk, f, l) is the admittance at that
frequency as computed by the convolution model. From
equation (9) these departures from the smooth admittance
model translate into the following corrections to the total
ocean tide height spherical harmonic coefficients.

DA2m
lp w2mk ; tð Þ

DB2m
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2
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5
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In this way corrections to the convolution model can be
applied, as desired, at any tidal frequency that has
appreciable departures from the smooth admittance model.

3.4. Ocean Tide Potential

[30] The geopotential, DV(r, f, l), is usually expressed
by a spherical harmonic expansion with normalized coef-
ficients DClp(t) and DSlp(t),

DV r;f;lð Þ ¼ GM

r

X1
l¼1

Xl

p¼0

a

r

� �l

NlpPlp sinfð Þ

� DClp tð Þ cos plþ DSlp tð Þ sin pl
� �

ð19Þ

The contribution of the ocean tides to temporal variations of
these geopotential coefficients is then the sum total of the
convolution model of the total ocean tide height in each
band and the corrections at each tidal frequency that is
expected to have significant deviations from the convolu-
tion model.
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The contribution from the deformation of the solid Earth
that is caused by the load of the ocean tides, namely the load
tide, is taken into account by the factor (1 + k0l), where k

0
l is

the degree l load Love number. The mean density of the
oceans is defined by rw. Equation (20) assumes the
relationship g = GM/a2. The summation in m explicitly
shows the contribution from the total ocean tide in each of
the three tidal bands, and the summation in i accounts for
the small correction at each of the I frequencies with
significant departures from the smooth admittance model.

4. Application to GRACE

4.1. Contributions to Geoid Height

[31] Use of the smooth admittance assumption provides
the opportunity to determine a first order estimate of the
contribution of each tidal frequency to variations of geoid
height. The total admittance at any tidal frequency Z(w2mk,
f, l) can be decomposed into its spherical harmonic
components using a similar form to the admittance differ-
ences shown in equation (17), but using total admittance
coefficients Alp

Z (w2mk) and Blp
Z (w2mk) instead of the difference

coefficients DAlp
Z (w2mk) and DBlp

Z (w2mk), respectively. Fol-
lowing Wahr et al. [1998] and Ray et al. [2003] the degree
amplitude spectrum of the variations in the geoid caused by
that ocean tide component, dNl (w2mk), is derived from the
RMS over one tidal period.

dNl w2mkð Þ ¼ 3rw
re

1þ k 0l
� 	
2l þ 1

� H2
2mk

2

Xl

p¼0

jAZ
lp w2mkð Þj2 þ jBZ

lp w2mkð Þj2
� �" #1=2

ð21Þ

The mean density of the Earth is denoted by re.
[32] The contribution to geoid height from the total ocean

tide in each band is shown in Figure 3 and is computed from
the root-sum-square of the contribution from each frequency
in that band. The admittance of each tidal component is
derived from the self-consistent equilibrium model of the
long-period tides, and a convolution formalism model with
t = 1 day applied to the GOT00.2 model of the diurnal and
semidiurnal ocean tides. The results shown do no change
significantly when t = 2 days is used instead, especially at
the scales shown. The tide potential amplitudes, H2mk, are
taken from the harmonic development of Tamura [1987]

C06023 DESAI AND YUAN: OCEAN TIDE POTENTIAL CONVOLUTION MODEL

7 of 13

C06023



since it provides a more comprehensive representation of
the tidal spectrum than the CTE development. For compar-
ison the baseline performance goals for GRACE and
the formal errors in the currently best available GRACE-
derived gravity field,GGM02C, are also shown (S.Bettadpur,
personal communication, 2005).
[33] In an effort to determine the tidal components that

are significant to achieving the GRACE performance goals,
Figure 3 also shows the contribution from subsets of tidal
components in each band as derived by applying thresholds
to the tide potential amplitudes H2mk. The only components
with jH2mkj � 300 mm are the M2 and K1 components and
should be taken to at least spherical harmonic degree 60 and
50, respectively, to achieve the GRACE performance goals.
Similarly, the O1, P1, N2, and S2 components, as the
additional components with jH2mkj � 100 mm, should be
taken to at least degree 45. Considering those tidal compo-
nents with jH2mkj � 10 mm then in total 6 long-period
components should be taken to at least degree 20, 9 diurnal
components to at least degree 35, and 11 semidiurnal com-
ponent to at least degree 40. These include the 18.6 year, Ssa,

Mm, Mf, Mt, Q1, M1, J1, OO1, 2N2, m2, n2, L2, T2, and K2
components, as well as the nodal modulations of the Mf, O1,
K1, M2 and K2 tidal components. The diurnal and semidiur-
nal components with jH2mkj � 0.1 mm and long period
components with jH2mkj � 1 mm should be considered to
degree 10. In total this consists of 114 diurnal, 85 semidiurnal,
and 20 long period components. The tidal components of
smaller amplitude are not likely to have a significant impact
on the GRACE performance goals. A convolution model
with S = 1 requires 3 complex coefficients in each band
and therefore has similar computational burden to indi-
vidually modeling the six diurnal and semidiurnal com-
ponents that need to be modeled to at least degree 45.
However, the convolution model will then also implicitly
model to high degree all of the almost 200 diurnal and
semidiurnal components that should be modeled at the
low degrees.
[34] An alternative approach, and one that is of signifi-

cance to the smooth admittance model, is to separate the
ocean tide contributions to geoid height by tidal group
number, as shown in Figure 4. The first two digits of the
Doodson number, d1d2, define the tidal group number
where d1 = 0, 1 and 2 for the long-period, diurnal, and
semidiurnal tidal bands, respectively. For convenience we
define g2 = d2 � 5 so that each tidal group consists of
clusters of tidal frequencies that are centered around
0.96614 d1 + 0.03660 g2 cpd. Each tidal band is then
centered at the tidal group with g2 = 0, and g2 increasingly
deviates from zero towards the outer regions of the tidal
band. The CTE harmonic development defines the degree 2
TGP for groups with jg2j 
 4, while the Tamura [1987]
development defines it for jg2j 
 7. This explains the

Figure 4. Same as Figure 3, but only for the (a) diurnal
and (b) semidiurnal ocean tides, and with the dashed lines
showing the contribution of all tidal frequencies in each
tidal group. Tidal group number is taken from the first two
digits of the Doodson argument number, d1d2, where d1 = 1
in the diurnal band and d1 = 2 in the semidiurnal band.
Group number is denoted in the figure by using g2 = d2 � 5.

Figure 3. Degree variance of the contribution of the
(a) long-period, (b) diurnal, and (c) semidiurnal ocean tides
to the geoid height. The two thick solid lines show the
prelaunch baseline performance goal for the GRACE
mission, and the formal errors in the GGM02C GRACE
gravity field. The solid line shows the contribution from all
spectral components in each band, while the dashed lines
show the contribution of only those tidal frequencies that
satisfy the indicated threshold limits on the magnitude of the
respective tide potential amplitude, jHnmkj.
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0.2 cpd wider bandwidth available from the Tamura [1987]
development.
[35] The largest amplitude diurnal and semidiurnal tidal

components occur at the central groups where jg2j 
 2. The
dominant tidal components in these groups are explicitly
provided by the tide height models and provide an impor-
tant constraint to the diurnal and semidiurnal convolution
functions in this region of the tidal spectrum. As illustrated
in Figures 1 and 2, the uncertainty of the admittance
function is therefore expected to be smallest for the ocean
tides in these central groups where jg2j 
 2. However, at the
outer groups where jg2j > 2 the admittance function is
effectively defined by an extrapolation since no constraint is
available from the tide height models. The uncertainty of
this extrapolation is expected to gradually increase towards
the outer tidal groups. Fortunately, the amplitude of the tidal
components decreases towards the outer tidal groups and
consequently reduces the impact of the increasing admit-
tance function uncertainties on the ocean tide potential
models. For example, Figure 4 shows that the contributions
to geoid height from the extreme outer groups where jg2j =
6 and 7 are below the GRACE performance goals so the
large uncertainty in the admittance function at these fre-
quencies is not expected to have an impact on these goals.
The mid-groups where jg2j = 3 and 4 need to be taken to
approximately degrees 20 and 10, respectively, but the
uncertainty of the admittance function extrapolation is
expected to be smallest at these groups. The contribution
of the ocean tides from groups with jg2j = 5 in the diurnal
and semidiurnal bands lies at the GRACE performance
goals at degrees less than 10 and may have an impact on
GRACE performance. Inclusion of the tides in this group
through the application of a smooth admittance approach
with harmonic developments of the TGP would then require
more extensive developments than is available from CTE,
such as that from Tamura [1987]. In contrast, use of a TGP
derived from luni-solar ephemerides inherently includes all
groups.
[36] The sensitivity of GRACE to the diurnal and semi-

diurnal groups where jg2j 
 4 reduces the effective band-
width of the diurnal and semidiurnal bands to approximately
0.29 cpd, so that longer lag intervals of less than 2.3 days
can be used for the GRACE ocean tide potential convolu-
tion models. The non-negligible contributions of the diurnal
and semidiurnal ocean tides with groups jg2j = 3 an 4 also
suggests potential for improvement of the GRACE ocean
tide potential convolution models. Specifically, the extrap-
olation of the admittance functions at these groups could be
eliminated by extending the Fourier series of the diurnal and
semidiurnal convolution models to S = 2 at least up to
degree 20 using tide height models at two frequencies in
these groups.

4.2. Results From GRACE

[37] The GRACE mission consists of a pair of satellites
that have an inter-satellite dual frequency one-way K-band
ranging system. The GRACE gravity fields are determined
from a least squares fit to the difference between the K-band
range rate (KBRR) measurements and the respective range
rate that is computed from a nominal orbit for the pair of
satellites [Tapley et al., 2004b]. The nominal orbit is
computed by using a priori models of the static and

temporally varying gravity field, and measurements from
an accelerometer and global positioning system receiver on
each satellite. The KBRR observations effectively provide a
measure of the observed gravity field so we use the postfit
KBRR residuals, namely the residuals after estimating the
monthly GRACE gravity fields, to evaluate the impact of
the various ocean tide potential models.
[38] We use the Mirage software package from the Jet

Propulsion Laboratory to process the GRACE data. Daily
nominal orbit solutions are first generated and then com-
bined to estimate monthly gravity fields to degree 120. In all
cases the nominal orbit uses the GRACE-derived GGM01C
static gravity field [e.g., Tapley et al., 2004a, 2004b], the
IERS2003 conventions for the solid Earth tide model
[McCarthy and Petit, 2004], and identical models for the
contributions to the geopotential from the atmosphere and
non-tidal ocean circulation. Two monthly gravity solutions,
September and October of 2003, are used to evaluate the
various ocean tide potential models. Six days during the
September 1 to October 31 evaluation period are excluded
from the monthly gravity solutions because of known
problems with the GRACE data on those days.
[39] Initial tests are performed to determine the sensitivity

of the ocean tide potential convolution model, as derived
from the GOT00.2 tide height model, to the lag interval and
the method used to derive the diurnal and semidiurnal
convolution weights. In these studies the model for the
long-period tides is fixed and the ocean tide potential is
always taken to spherical harmonic degree 60. First, the use
of three different lags intervals, 1, 1.5, and 2 days, to define
the diurnal and semidiurnal convolution models are tested
and are always applied identically to both bands. Second,
three different methods are used to derive the convolution
weights with each of the three lag intervals. They consist of
an exact fit to the Q1, O1, and K1 tides for the diurnal
weights and the N2, M2 and K2 tides for the semidiurnal
weights; an equally weighted least squares fit to these six
observed tidal components and the 9 diurnal and 5 semidiur-
nal tidal components that are inferred by linear interpolation
and extrapolation of the respective observed admittances; and
a weighted least squares fit to the same observed and inferred
tidal components where each tidal component is weighted by
the square of the respective tide potential amplitude.
Corrections to the convolution model from the two least
squares methods are also applied to ensure that the Q1,
O1, K1, N2, M2, and K2 tidal components are modeled
exactly as provided by the GOT00.2 model in all three
methods.
[40] The net effect of the various lag intervals and

methods for deriving the convolution weights is less than
1.5% in the postfit KBRR residual variances, as shown in
Table 1. The weighted least squares method, which should
most closely reflect the convolution weights that would be
determined from a time series of ocean tide observations,
consistently results with the largest KBRR residual variance
by 0.3–1.3%. In contrast, the two other methods effectively
weight the admittance at each considered tidal frequency
equally and perform similarly to each other. Within each
fitting method the KBRR residual variance changes by less
than 0.5% for the 1–2 day range of lag intervals, so the
sensitivity to lag interval is smaller than it is to the method
used to fit the convolution weights. This supports the
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predicted small sensitivity of GRACE to the outer groups of
the diurnal and semidiurnal tidal bands where changes to the
lag interval and the method used to determine the convo-
lution weights will cause the largest differences in the
smooth admittance function. Nevertheless, the lag intervals
of 1.5 and 2 days provide the smallest residual variances
when using the exact fit approach, and have no significant
impact when using the equally weighted least squares
approach.
[41] Based on these results further testing of the convo-

lution models is restricted to those that derive the diurnal
and semidiurnal convolution weights from the exact fit
method with a lag interval of 2 days. The exact fit
convolution model exactly represents the three primary tidal
components in each band. It therefore has a lower compu-
tational burden than either of the least squares methods
because six fewer correction terms are required at each
spherical harmonic degree and order. The relative perfor-
mance of the three ocean tide potential models that are

described in Table 2 are also evaluated using the monthly
postfit KBRR residual variances, as illustrated in Figure 5.
The overall trend of the results from each month is similar
except that the residual variance from October is respec-
tively 10% larger than in September. The ocean tides are
predominantly of much shorter period than a month so we
evaluate the impact of the ocean tide potential models at
shorter periods by partitioning the monthly postfit KBRR
residual variances by day, as shown in Figure 6. For clarity,
this figure shows the daily residual variance from only the
degree 60 versions of the three models described in Table 2
as a percentage of the respective residual variance from the
degree 30 GOT00.2 harmonic model.
[42] One of three ocean tide potential models that are

evaluated applies the traditional harmonic approach to
model the ocean tide potential. In our application of the
GOT00.2 harmonic model the total ocean tide potential at
each spherical harmonic degree and order is formed from
the sum of 12 diurnal, 9 semidiurnal, and 7 long-period tidal
frequencies. In contrast, the respective GOT00.2 convolu-
tion model is formed from the sum of 4 diurnal, 4 semidi-
urnal, and 5 long-period complex terms at each degree and
order. Although the convolution model is formed from
fewer terms it does require some additional computational
overhead to interpolate the luni-solar ephemerides and to
compute the TGP at the three required times of t � 2 days, t,
and t + 2days.
[43] The convolution model uses half the number of terms

at each degree and order but results with a 4–5% smaller
monthly residual variance than the harmonic model from
both the degree 30 and 60 respective models. Although not
explicitly shown, the daily fluctuations in Figure 6 as well
as the overall variance reduction from the two convolution
models result primarily from the degree 30 and lower
spherical harmonic components. The degree 31 and higher
spherical harmonic components reduce the daily residual
variance by 1–4%. The daily postfit residual variance from
the convolution model is smaller than from the harmonic
model by as much as 15%, although there are two days
where the residual variance is larger than from the degree 30
GOT00.2 harmonic model, but by less than 1.5%. As
expected, GRACE appears to be insensitive to the degree

Table 1. Postfit K-Band Range Rate Residual Variance From Two

Monthly GRACE Gravity Solutions After Using Various Lag

Intervals and Approaches to Derive the Diurnal and Semidiurnal

Convolution Weights From the GOT00.2 Ocean Tide Model

Approacha
Lag Interval,

t, days

KBRR Residual
Variance, mm2/s2

September October

Exact Fit to Observed 1.0 0.04626 0.05114
Exact Fit to Observed 1.5 0.04607 0.05108
Exact Fit to Observed 2.0 0.04616 0.05108
Equally Weighted Least Squares 1.0 0.04609 0.05083
Equally Weighted Least Squares 1.5 0.04608 0.05083
Equally Weighted Least Squares 2.0 0.04611 0.05093
Weighted Least Squares 1.0 0.04641 0.05137
Weighted Least Squares 1.5 0.04639 0.05148
Weighted Least Squares 2.0 0.04632 0.05122

aThe exact fit approach is where the convolution weights are derived
from an exact fit to the observed three diurnal (Q1, O1, and K1) and three
semidiurnal (N2, M2, and K2) tides. The equally weighted and weighted
least squares approaches are where the convolution weights are respectively
derived from a least squares fit to all of the available observed and inferred
diurnal and semidiurnal tidal components. The weighted approach weights
each tidal component by the square of its tide potential amplitude.

Table 2. Description of the Formulation of the Three Ocean Tide Potential Models Tested With GRACE Data

Model Diurnal Band Semidiurnal Band Long-Period Band

GOT00.2 Harmonic Observed: Q1, O1, K1
Inferred: 2Q1, J1, M1, OO1
r1, s1, P1, f1, p1

Observed: N2, M2, K2, S2
Inferred: 2N2, L2, m2, n2, T2

Mm, Mf, Mt, and Mq from
FES2004.
Sa, Ssa, and 18.6 year from
self-consistent equilibrium.

GOT00.2 Convolution Convolution weights from
exact fit to Q1, O1, and P1,
with t = 2 days.
Correction for observed K1.

Convolution weights from
exact fit to N2, M2, and K2,
with t = 2 days.
Correction for observed S2.

Constant admittance
convolution weight from
self-consistent equilibrium.
Correction for Mm, Mf,
Mt, and Mf node from
FES2004a.

FES2004 Convolution Convolution weights from
exact fit to Q1, O1, P1,
with t = 2 days.
Correction for observed K1.

Convolution weights from
exact fit to N2, M2, and K2
with t = 2 days.
Correction for observed S2.

Constant admittance
convolution weight from
self-consistent equilibrium.
Correction for Mm, Mf,
Mt, and Mf node from
FES2004a.

aThe correction for the Mf nodal modulation is derived by assuming a constant admittance with the Mf tide from FES2004.
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61 and higher spherical harmonic components of the ocean
tides since there is no noticeable impact on the KBRR
residuals from these components.
[44] An approach that is sometimes used to improve the

harmonic model with minimal additional computational
overhead is to apply the so-called 18.6 year nodal modula-
tion corrections to each of the primary tidal components.
These corrections take the form of time-dependent adjust-
ments to the amplitude and phase of the primary tidal
components that are derived by assuming a constant admit-
tance between the primary component and the neighboring
18.6 year modulations. Nodal modulation corrections are
applied within the ocean tide height prediction software that
is provided with the GOT00.2 and FES2004 tide models,
and have been implemented in the ocean tide potential
model that is used in the GEODYN software package at
the Goddard Space Flight Center (R. Ray, personal com-

munication, 2005). The results from the convolution model
certainly indicate that the use of nodal corrections will
reduce the postfit KBRR residual variance from the har-
monic model, but we have no results to suggest that the
convolution approach is superior. We did not apply nodal
modulation corrections in our application of the GOT00.2
harmonic model because our software did not have the
existing infrastructure to do so, while our application of the
convolution model inherently accounts for these modula-
tions, and indeed models the full tidal spectrum with fewer
terms than the tested harmonic model.
[45] A comparison between ocean tide potential convo-

lution models derived from the GOT00.2 and FES2004 tide
height models shows that the monthly residual variance
from the degree 30 and 60 FES2004 models is 2–3% lower
than that from the respective GOT00.2 models. The degree
60 FES2004 model results with a smaller residual variance

Figure 5. Postfit K-band range rate (KBRR) residual variance from monthly GRACE gravity recovery
solutions in September and October 2003. The three models shown are described in Table 2. The models
are taken to maximum spherical harmonic degree, L = 30, 60 and 90.

Figure 6. Daily postfit K-band range rate (KBRR) residual variance from the degree L = 60 GOT00.2
harmonic (GOT00.2H) (dashed line), GOT00.2 convolution (GOT00.2C) (dotted line), and FES2004
convolution (FES2004C) (solid line) models as a fraction of the respective postfit residual variance from
the degree 30 GOT00.2 harmonic model.
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than the respective GOT00.2 model on all except one of the
days in the two month test period. In addition, the degree 30
FES2004 convolution model also has a smaller monthly
residual variance than the degree 60 GOT00.2 model and a
smaller daily residual variance on all except 12 days in the
two month period. This suggests that the long wavelength
components of the ocean tides are better modeled by
FES2004 and is surprising because typical tide height
modeling strategies that are often adopted by empirical
models, such as GOT00.2, rely on hydrodynamic models
to model the short wavelength variability, and then use
empirical data from satellite altimetry to determine long
wavelength corrections to the hydrodynamic models. The
GOT00.2 model is derived from empirical corrections to a
much earlier version of the FES2004 model, namely the
FES94.1 model, as well as other local hydrodynamic
models. Geographical maps of the postfit KBRR residuals
may provide additional insight into the cause of the differ-
ing results from the two presented convolution models.

5. Conclusions

[46] Application of the convolution formalism of MC66
together with the computation of the TGP from luni-solar
ephemerides provides a computationally efficient model of
the complete spectrum of the ocean tide potential. The
improvements to the ocean tide potential model from
representing the entire tidal spectrum as well as the effi-
ciency of the approach are demonstrated by smaller
GRACE intersatellite range rate residuals from the use of
the convolution model than from a more traditional har-
monic model with twice the number of parameters. The
monthly GRACE KBRR residual variance is smaller by 4–
5% and the daily residual variance is smaller by as much as
15%.
[47] Results from the two months of GRACE data used to

evaluate the ocean tide potential models appear to be
sufficiently consistent to provide a reliable evaluation of
the relative impact of the convolution versus harmonic
approaches to modeling the ocean tide potential, and for
cross comparison of the GOT00.2 and FES2004 convolu-
tion models. However, longer evaluation periods may be
useful for tuning of the lag interval and method to derive the
convolution weights. Further reduction of the monthly
KBRR residual variance by approximately 1% may be
possible by better constraining the convolution admittance
function at tidal frequencies in the outer regions of the
diurnal and semidiurnal tidal bands where the uncertainties
in the presented function are largest. Ideally this constraint
could be provided by explicit tide height models for at least
two frequencies in those regions of the tidal bands, for
example 2Q1 and h1 in the diurnal band and �2 and h2 in
the semidiurnal band. In doing so it may be possible to add
two more terms to the Fourier series model of the diurnal
and semidiurnal admittance functions and perhaps to adopt
a shorter lag interval than the 2 days used here.
[48] The adopted approach of using a combination of the

convolution model with corrections at discrete frequencies
allows the complete spectrum of the ocean tide potential to
be modeled to first order by enforcing a smooth admittance
assumption across the tidal spectrum, and the few tidal
frequencies at which explicit tide height models are avail-

able to be modeled exactly as provided. This approach also
provides some flexibility for reducing commission errors in
the ocean tide potential models through the use of GRACE
data or the precise orbit determination of other Earth
orbiters. One approach would be to determine corrections
to the a priori convolution weights. However, this approach
will provide weights that are biased towards providing the
best fit to the largest tidal components rather than providing
the best fitting admittance function across the tidal spec-
trum. An alternative approach would be the determination
of corrections at a few dominant tidal frequencies and
spherical harmonic components where use of a background
convolution model should reduce any cross contamination
or aliasing from other frequencies in the tidal spectrum.

Appendix A: Deriving the Convolution Weight
Spherical Harmonic Coefficients

[49] The convolution weights for a tidal band are derived
from a model of the ocean tide height at K frequencies in
that band. Ideally, these K tidal components should have
been derived independently without any smooth admittance
assumptions relating them to each other. For reasons shown
below K should be odd-valued. Global ocean tide models
usually define the ocean tide height z(w2mk, f, l, t) at a
particular frequency by the amplitude and Greenwich phase
lag, A(w2mk, f, l) and G(w2mk, f, l), respectively.

z w2mk ;f;l; tð Þ ¼ A w2mk ;f;lð Þ
� cos w2mkt þ b2mk � G w2mk ;f;lð Þ þ d2mkpð Þ

ðA1Þ

d2mk ¼ 1 when �1ð Þd0mM2mH2mk < 0

0 when �1ð Þd0mM2mH2mk > 0



ðA2Þ

The convolution weights for each tidal band are then
derived from the following steps.
[50] Step 1: For each of the k = 1, K available ocean tide

height components compute maps of the in-phase and
quadrature components, zi (w2mk, f, l) and zo(w2mk, f, l),
from maps of the amplitudes and Greenwich phase lags as
follows.

zi w2mk ;f;lð Þ þ izo w2mk ;f;lð Þ ¼ A w2mk ;f;lð ÞeiG w2mk ;f;lð Þ ðA3Þ

[51] Step 2: For each of the K tidal components, compute
maps of the complex admittance function, Z(w2mk, f, l),
from maps of the in-phase and quadrature components.

Z w2mk ;f;lð Þ ¼ X w2mk ;f;lð Þ þ iY w2mk ;f;lð Þ

¼ zi w2mk ;f;lð Þ � izo w2mk ;f;lð Þ
�1ð Þmþd0m jH2mk j

ðA4Þ

[52] Step 3: Solve for maps of the complex convolution
weights, U2m(f, l, s) = u2m(f, l, s) + iv2m(f, l, s), by
applying equation (10) to the admittance maps of the K tidal
components, where a reasonable value for t in the diurnal
and semidiurnal band is 2 days.
[53] Step 4: Decompose the maps of the convolution

weights into their spherical harmonic components, as shown
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in equation (12), to derive the normalized complex spherical
harmonic coefficients, Dlp

2m(s) and Elp
2m(s).

[54] Equation (10) defines the smooth admittance func-
tion with (2S + 1) complex coefficients, and is therefore
solved exactly when there are K = 2S + 1 tidal components
available to derive the convolution weights. As such, K
should be odd-valued to exactly fit the available tidal
components, in which case the limit on the Fourier series
is defined by S = (K � 1)/2.
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